ACCEPT without reference to experiment 2 but higher concentration must be referred to expt 1
COND fewer collisions or lower rate of collision
(ii) powdered so larger surface area

COND so more collisions or higher rate of collisions
(iii) higher temperature particles move faster or more particles have enough energy to react or have more energy or more particles have Ea
COND collide more frequently
or more particles have energy to react
or more collisions result in a reaction
NOTE for conformity faster collisions = rate of collisions
(b) (i) from origin
gradient decreases until $=0$
therefore has to be a curve
(ii) mass of one mole of $\mathrm{CaCO}_{3}=100$
number of moles of $\mathrm{CaCO}_{3}=0.3 / 100=0.003$ [1]
moles of $\mathrm{HCl}=5 / 1000 \times 1=0.005$ [1]
reagent in excess is CaCO_{3} [1]
ecf from above
would need 0.006 moles of HCl
or hydrochloric acid only reacts with 0.0025 moles of CaCO_{3}
NOTE this mark needs to show recognition of the 1:2 ratio
(iii) mark ecf to (ii), that is from moles of limiting reagent in (ii)
moles of $\mathrm{CO}_{2}=0.005 \times 0.5 \times 24=0.06 \mathrm{dm}^{3}$
NOT cm^{3} unless numerically correct. $60 \mathrm{~cm}^{3}$
Ignore other units
NOTE If both number of moles integers then no ecf for (ii) and (iii)

2 (a) limestone or marble or chalk or coral or calcite or aragonite

(b) 100 [1]
56 ignore units in both cases [1]
(ii) 7.00 kg is $1 / 8$ of 56 [1]
$1 / 8$ of 100 kg is 12.5 kg [1]Give both marks for correct answer without explanation. Ignore missing unitsbut penalise wrong units
(c) Any reasonable explanation
Plants prefer soil pH about 7Plants do not grow (well) in acidic soils/plants grow betterTo increase crop yieldsAny ONE[1]Do NOT accept in acidic soils plants die
(ii) With calcium carbonate, pH cannot go above 7[1]
It is not washed away by the rain/remains longer in the soilIt is not absorbed by the plant[1]
OR
With calcium oxide, pH can go above 7[1]
It is washed away by the rain [1]
(iii) Any correct use - making steel/iron, making cement, making glass, [1]disposing of acid wastes, removing sulphur dioxide from fluegases, (stone in) building, indigestion tablets, toothpaste, cosmetics etc

Question	Answer	Marks
3(a)(i)		$\mathbf{1}$
(a)(ii)		$\mathbf{1}$
(a)(iii)		$\mathbf{1}$
(a)(iv)		$\mathbf{1}$
(a)(v)	air;	$\mathbf{1}$
(b)(i)	iron;	$\mathbf{1}$
(b)(ii)	any 2 from: carbon dioxide; carbon monoxide; nitrogen;	$\mathbf{1}$
(b)(iii)	$\mathbf{2}$	
(c)(i)	as the percentage of carbon increases, so the malleability decreases;	$\mathbf{1}$
(c)(ii)	M1 oxygen (gas) blown in; M2 carbon dioxide formed $/ C+\mathrm{O}_{2} \rightarrow$ CO $_{2} ;$	$\mathbf{2}$

Question	Answer	Marks	Guidance
4(a)	Forming an oxide (all) elements or (all) impurities become oxides;		(All) elements or (all) impurities react with oxygen A M1 for any one element becoming an oxide
	M2 Gaseous oxides carbon dioxide or sulfur (di)oxide escape/are removed as gases;		A formulae/carbon monoxide A oxides of sulfur/carbon I sulfur trioxide
	M3 Acidic oxides silicon(IV) oxide or phosphorus(III/V) oxide react/are neutralised by calcium oxide/lime;		A silicon (di)oxide for silicon(IV) oxide A phosphorus (tri/pent)oxide for phosphorus(III/V) oxide
	M4 Equation mark		A multiples
	any one of the following equations		I state symbols
	$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$;		I unbalanced equations
	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \text { or } 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$		\mathbf{R} other combustion equations with
	$\begin{aligned} & 4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} \text { or } \mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} ; \\ & 4 \mathrm{P}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{3} \text { or } \mathrm{P}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{3} \end{aligned}$		incorrect species
	M5 Word equation mark any one of the following word equations calcium oxide + silicon(IV) oxide \rightarrow calcium silicate; calcium oxide + phosphorus(III/V) oxide \rightarrow calcium phosphate;	5	A calcium oxide + silicon(IV) oxide \rightarrow slag A correct symbol equation for M5 but R other equations with incorrect species used as M5

Question	Answer	Marks	Guidance		
4(b)(i)	$\begin{array}{l}\text { Any one from: } \\ \text { (making) car (bodies); } \\ \text { machinery; } \\ \text { chains; } \\ \text { pylons; } \\ \text { white goods; } \\ \text { nails; } \\ \text { screws; } \\ \text { as a building material; } \\ \text { sheds/roofs; } \\ \text { reinforcing concrete; }\end{array}$	$\begin{array}{l}\text { A bridges } \\ \text { A tools } \\ \text { I cutlery }\end{array}$			
(b)(ii)	$\begin{array}{l}\text { Any one from: } \\ \text { knives; } \\ \text { drills; } \\ \text { railway track; } \\ \text { machine/cutting tools/hammers; } \\ \text { razor blades; } \\ \text { chisels; }\end{array}$	$\mathbf{1}$	$\begin{array}{l}\text { I cutlery items } \\ \text { I bridges }\end{array}$		
(b)(iii)	$\begin{array}{l}\text { M1 atoms or cations or (positive) ions or metal ions; } \\ \text { M2 arranged in a lattice or in layers or in rows or in a regular structure; } \\ \text { M3 rows or layers slide over one another; }\end{array}$	$\mathbf{1}$	$\begin{array}{l}\text { I (sea of) electrons } \\ \text { R protons or nuclei for M1 } \\ \text { A M2 non-directional forces }\end{array}$		
A ECF on particle named in M1 for M3					
I 'atoms' slide over one another				$]$	R ions and molecules for M1
:---					
A M2 for prevents sliding					
A M2 for 'stops' sliding					

